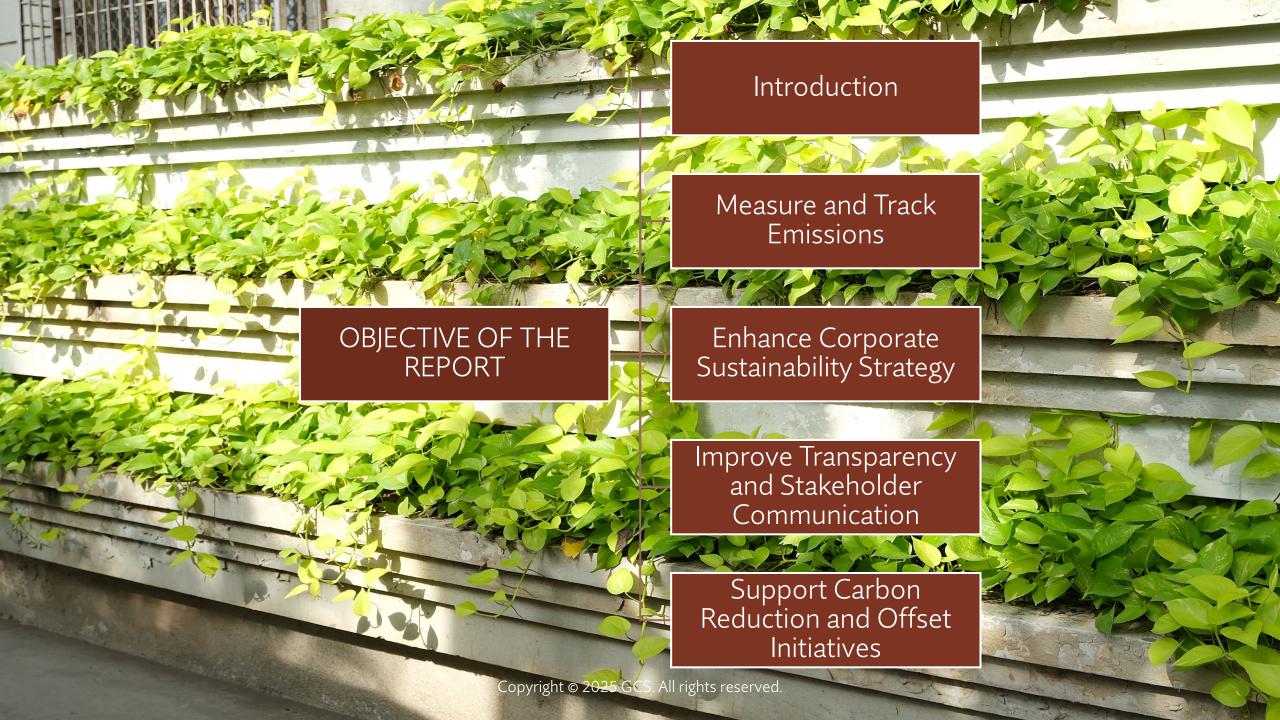

GHG INVENTORY ACCOUNTING CARBON FOOTPRINT

JAN 2023 – DEC 2024


Pal Fashions Pvt. Ltd.

E49 MIDC Tarapur Industrial Area, Boisar West, Dist Palghar - 401506

Copyright © 2025 GCS. All rights reserved.

Company Profile

Pal Fashions Pvt Ltd, established in 1980, is a leading textile manufacturer based in Tarapur, India. With over four decades of expertise, the company specializes in Schiffli embroidery, multi-head embroidery, dyeing, and waterless digital printing, serving global markets across 26+ countries. Pal Fashions operates a vertically integrated facility equipped with advanced machinery sourced from Switzerland, Germany, Japan, and other global leaders.

Monthly production capacity includes:

- 1 million meters of processed textiles
- 0.5 million meters of embroidery or 300 million stitches

The company is committed to sustainable manufacturing, holding the distinction of being India's first GreenCo Gold-rated textile enterprise.

Its operations emphasize:

- Waterless digital printing to reduce water consumption
- Energy-efficient wet processing
- GHG emissions tracking and reduction across Scope 1, 2, and 3

Pal Fashions continues to innovate in low-impact textile production, aligning with national and international climate goals while delivering high-quality products to global clients.

Management's Vision & Mission Statement:

Our Vision is to empower global fashion through innovative textiles, Embroidery, Wet Processing and Printing sustainability, quality, and creativity into every fabric, inspiring timeless elegance and functionality for generations to come.

Our mission is to revolutionize the textile industry by delivering exceptional quality fabrics sustainably sourced and produced. We strive to foster creativity, collaboration, and integrity in every aspect of our operations, ensuring customer satisfaction, environmental stewardship, and social responsibility.

Sardar Ascharj Singh Ahuja Founder

Arvinder Singh Ahuja Chairman cum Managing Director

Charan Singh Ahuja Managing Director

Arjun Singh Ahuja Managing Director

CARBON FOOTPRINT REPORT

What is A Carbon Footprint?

A carbon footprint refers to the total amount of greenhouse gas (GHG) emissions—mainly carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O)—generated throughout the lifecycle of clothing production, from raw material extraction to end-of-life disposal.

Key Sources of Carbon Footprint:

Energy Consumption – Use of fossil fuels for electricity, heating, and industrial processes.

Transportation – Emissions from vehicles, airplanes, and logistics.

Manufacturing & Production – Industrial activities, including raw material extraction and processing.

Waste Management – Landfills, incineration, and wastewater treatment.

Supply Chain Activities – Emissions from goods and services used in operations.

Carbon Emission in Textile Industry

The textile and apparel industry's emissions stem from a complex, resource-intensive supply chain that includes raw material cultivation, manufacturing, transportation, and disposal.

10% of total global carbon emissions

~ 5 billion tonnes in carbon emissions per year

Targets to reduce GHG emissions by 45% by 2030

IMPORTANCE OF GHG REPORTING

1. Climate Change Mitigation

Carbon emissions, particularly CO_2 , are the primary drivers of climate change. Transparent reporting helps businesses, governments, and individuals track their environmental impact and take measures to reduce it.

2. Regulatory Compliance

Many countries and regions have laws requiring businesses to disclose their emissions. Compliance with these regulations helps avoid penalties and ensures alignment with national and international climate goals.

3. Corporate Responsibility & Reputation

Consumers and investors are increasingly favoring environmentally responsible companies. Transparent reporting enhances credibility, attracts eco-conscious customers, and strengthens brand reputation.

4. Risk Management & Cost Savings

Understanding emission levels helps organizations identify inefficiencies, reduce energy consumption, and cut costs. This also prepares businesses for future carbon taxes and regulatory changes.

5. Investor & Stakeholder Expectations

Many investors and stakeholders demand Environmental, Social, and Governance (ESG) transparency. Carbon reporting allows companies to showcase their commitment to sustainability, making them more attractive for investment.

6. Benchmarking & Goal Setting

By reporting emissions, organizations can set clear sustainability goals, track progress, and compare their performance against industry standards or competitors.

7. Supply Chain Accountability

Large corporations are increasingly requiring suppliers to disclose carbon emissions to ensure their entire supply chain is aligned with sustainability targets.

8. Contribution to Global Initiatives

Carbon reporting aligns with international agreements like the **Paris Agreement** and **Net-Zero Initiatives**, helping nations and industries work collectively toward a sustainable future.

PAL FASHIONS PVT. LTD.

Innovation inspired from culture, nature, tradition and forecasting, has led the culture of Pal Fashions in the direction of Design Thinking. The deep emphasis on development and innovation has made Pal Fashions a Trend Setter for the rest of the industry for embroidery design and process innovation.

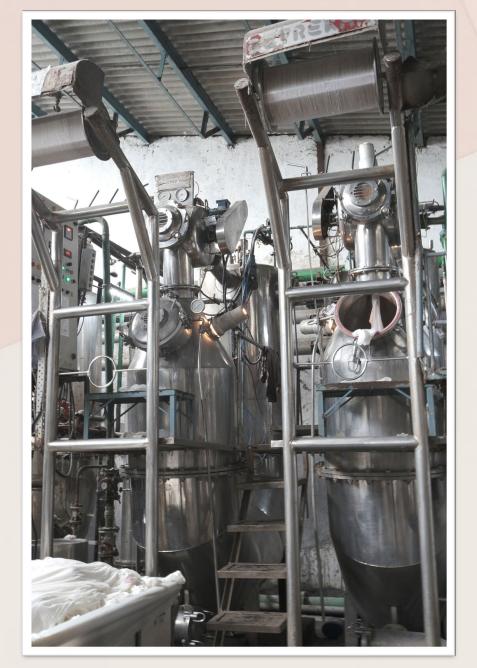
End-to-end solutions of Automatic Weaving, Modern Wet Processing, Digital Printing, Schiffli and Multi-Head Embroidery as well as Apparel Manufacturing for multiple leading brands including our own brand NAARI; while ensuring Unmatched Delivery Speed.

Compliance of global norms is achieved through concurrent testing in the company's well-equipped laboratory.

Superior standards of quality met through Swiss precision.

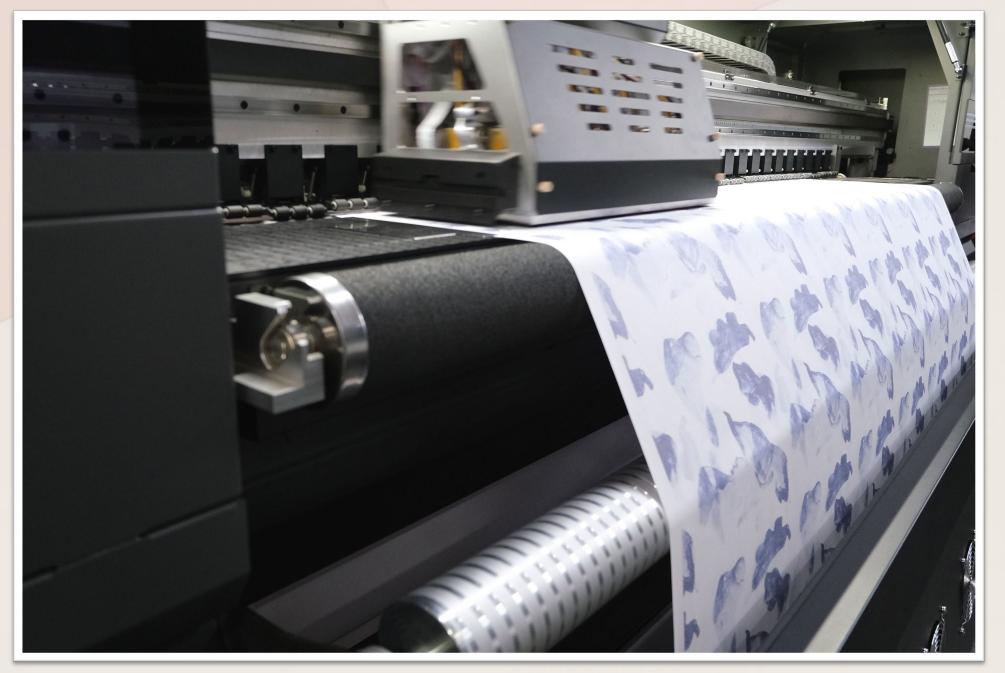
DYEING

Copyright © 2025 GCS. All rights reserved.



Copyright © 2025 GCS. All rights reserved.

Copyright © 2025 GCS. All rights reserved.

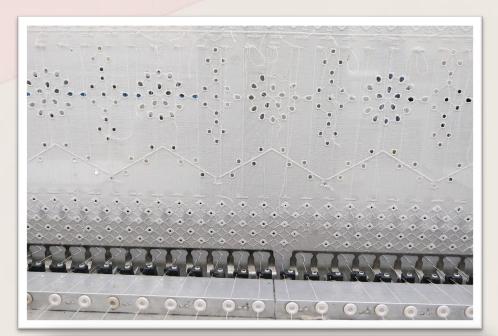


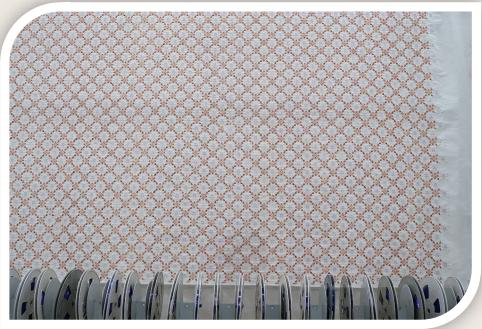
Copyright © 2025 GCS. All rights reserved.

PRINTING

Copyright © 2025 GCS. All rights reserved.

Copyright © 2025 GCS. All rights reserved.


EMBRIODERY



QA

Copyright © 2025 GCS. All rights reserved.

UTILITY & MACHINERY

Copyright © 2025 GCS. All rights reserved.

PAL FASHIONS PVT. LTD. GHG REPORT

About the Report

The company has conducted a **Greenhouse Gas (GHG) accounting study** for its operations from **January 1, 2023, to December 31, 2024**. The following methodologies and standards were used for assessment:

- 1. GHG Protocol Corporate Accounting and Reporting Standard Greenhouse Gas Protocol
- 2. Corporate Value Chain (Scope 3) Accounting and Reporting Standard Greenhouse Gas Protocol

The study follows ISO 14064-1 & ISO 14064-2 for GHG accounting, covering Scope 1, Scope 2, and Scope 3 emissions (direct, energy indirect, and other indirect emissions). The GHG inventory report is prepared to enhance transparency and ensure compliance with stakeholder communication.

This report also includes necessary data assumptions, exclusions, and explanations for any deviations from methodologies. The scope includes all emissions within the operational boundaries of **Pal Fashions Pvt. Ltd., Boisar**.

The facility holds all applicable pollution consents and operates under government regulations. The study involved collecting and analyzing data as per the above standards, ensuring full compliance with environmental regulations.

Organizational Boundary:

Establishing an **organizational boundary** is essential for accurate greenhouse gas (GHG) emissions reporting.

Period of Validity:

This report remains valid until it is superseded by a future revision or until the Company publishes a report that modifies the approach and calculation methodology outlined herein.

Frequency of the Report:

The unit plans to assess its GHG performance annually. This report covers data from January 1, 2023, to December 31, 2024, inclusive of both dates.

Contents:

The report includes data collected method from various sources, and details of emission factors & proper calculation.

Intended Use & Users of the Report

This report is a voluntary communication to various stakeholders of Pal Brothers Pvt. Ltd, including customers, management, investors, government agencies, and the public. It serves to monitor GHG emissions performance and to establish a basis for future GHG reduction targets. Stakeholders can track the company's GHG performance over time and refer to this report for future verification of carbon performance, if applicable.

Scope covered: Scope 1, Scope 2 and Scope 3

Management Details:

Mr. Arvinder Singh Ahuja | Chairman cum Managing Director
Mr. Charan Singh Ahuja | Managing Director
Mr. Arjun Singh Ahuja | Managing Director

Verifier: Mr. Rajiv Chaturvedi

Verifier Certificate: ISO 14064-1 & ISO 14064-2

Certificate No.: 117874925 / 165946641:

Issued by: SGS India Pvt. Ltd.

Accounting & Reporting by: Green Compliance Services

List of Emission Factors

Fuel Type	NCV (GJ/ton)	CO_2 Emission Factor (EF) (kg CO_2/GJ)	Source			
	Solid Fu	iels				
Coal (Bituminous)	25.0 - 29.3	94.6	IPCC 2006			
Lignite	10.0 - 15.0	101	IPCC 2006			
Peat	9.0 - 12.0	106	IPCC 2006			
	Liquid F	uels				
Diesel	42.5	74.1	IPCC 2006			
Petrol (Gasoline)	44.3	69.3	IPCC 2006			
Jet Fuel (Kerosene)	43	71.5	IPCC 2006			
Heavy Fuel Oil (HFO)	40.2	77.4	IPCC 2006			
	Gaseous	Fuels				
Natural Gas	48	56.1	IPCC 2006			
Liquefied Petroleum Gas (LPG)	46.1	63.1	IPCC 2006			
Refinery Gas	45	60	IPCC 2006			
	Biomass & E	Biofuels				
Wood (Dry)	15.6	109.6	IPCC 2006			
Bagasse	8.5	97	IPCC 2006			
Ethanol	26.9	71.4	IPCC 2006			
Biodiesel	37.5	70.8	IPCC 2006			

Carbon Footprint - GHG Inventory Reporting

Quantification of GHG emissions and removals

GHG emissions are quantified following the GHG Protocol, but removals are not quantified due to lack of verifiable data. No biogenic fuel is used within the operational boundary.

Calculation steps:

- Identification of GHG sources/sinks
- Selection of quantification methodology
- Selection and collection of GHG activity data
- Selection or development of GHG emission factors
- Calculation of GHG emissions

SCOPE 1, SCOPE 2, & SCOPE 3

EMISSION

Direct emissions: Include fossil fuel consumption, PNG gas in DG sets, HFC replenishment in ACs, and fuel use in vehicles under direct administrative control of the unit.

Energy indirect emissions: Result from the electricity purchased from the grid.

Other indirect emissions: Arise from fuel consumption in vehicles used for material transportation, final product dispatch, and employee commutation.

Direct GHG Emissions

Emissions from owned/ controlled

Electricity Indirect GHG Emissions

Emissions from electricity purchased and used

Other Indirect GHG Emissions

Other emissions not within Scope 1 and Scope 2

Identification of GHG Sources and sinks

	Source GHG Unit		
	Scope 1 (Direct Emissions)		
	Stationary combustion in diesel generators	CO ₂	tCO ₂
Combustion Sources	Stationary combustion in boiler	CO ₂	tCO ₂
	Refrigerant loss	CO ₂	tCO ₂
	LPG used in canteen	CO ₂	tCO ₂
Mobile Emissions	Fossil fuel consumption in company- owned vehicles	CO ₂	tCO ₂
	Scope 2 (Energy Indirect Emissions)		
Purchased electricity from grid	Emissions associated with power generation in the power plants connected to the regional grid	CO ₂	tCO ₂
	Scope 3 (Other Indirect Emissions)		
Transportation & Employee Commutation	Fossil fuel consumption in third party vehicles	CO ₂	tCO ₂

Pal Forest is a relevant GHG sink for the emissions for this unit.

Stationary Combustion

Activity	Activity Data Required	Units	Equations
	Diesel Consumed	Litres	
CO ₂ emissions from fossil fuel (diesel) Consumption	Density of diesel	Kg/lit	Litres of fuel consumed \times Density of fuel \times NCV of fuel \times EF \times 10 ⁻⁶
	NCV of diesel	TJ/Gg	
	Emission factor of diesel(EF)	tCO ₂ /TJ	
CO ₂ emissions from fossil fuel (PNG)	PNG Consumed	kg	1 ((- 1 1 - NG) / - ((- 1 - 1 - 7G - 40 - 6
Consumption	NCV of PNG	TJ/kT	kg of fuel consumed \times NCV of fuel \times EF \times 10 ⁻⁶
	Emission factor of PNG (EF)	tCO ₂ /TJ	
CO. Emissions from LDG Consumption	Amount of LPG used	kg	amount of LPG used × NCV of fuel × EF × 10 ⁻⁶
CO ₂ Emissions from LPG Consumption	NCV of LPG	TJ/Gg	amount of LPG used × NCV of fuel × EF × 10
	Emission factor of LPG	tCO ₂ /TJ	

Remarks:

Density of diesel assumed as 0.82 kg/lit

Other Emission Sources

Em ission Source	Activity Data Required	Units	Equations
HFC emission from refrigerant top up	Amount of HFC top up	Metric tonnes	Amount of HFC top up multiplied by GWP HFC

Energy Indirect Emissions

Emission Source	Activity Data Required	Units	Equation						
Purchase of grid electricity	Electricity imported from the grid	kWh	Electricity Imported from grid × Emission						
	Emission factor of grid	tCO ₂ /kWh	factor of grid ×10 ⁻³						

Remarks:

Emission factor of grid is taken as 0.82

Mobile Combustion

Emission Source	Activity Data Required	Units	Equation
	Fuel Consumed	Litres	
Emissions due to mobile combustion	Density of the fuel	Kg/lit	Litres of fuel consumed × Density of fuel × NCV of fuel ×
Emissions due to mobile combustion	NCV of the fuel	TJ/Gg	EF × 10 ⁻⁶
	Emission factor of fuel	tCO ₂ /TJ	

Other Indirect Emissions

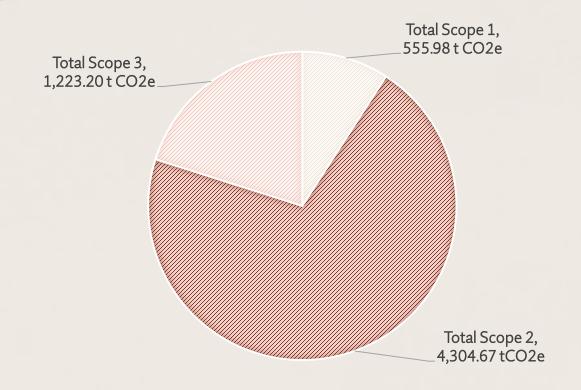
Emission Source	Activity Data Required	Units	Equations
	Fuel Consumed in third party vehicles	Litres	
Emissions due to mobile combustion	Density of fuel	Kg/lit	Litres of fuel consumed × Density of fuel ×
Emissions due to mobile compustion	NCV of fuel	TJ/Gg	NCV of fuel × EF ×10 ⁻⁶
	Emission factor of fuel	tCO ₂ /TJ	

The waste data is not considered in GHG accounting as the unit has a legal agreement with a Waste Management Company to responsibly recycle/upstream the waste.

S.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Diesel consumed in DG set (600 kVA)	Scope 1	Ltr	500	500	2250	850	800	1150	1050	350	1450	2400	1900	1100	14300
2	Biomass Pellets (Soyabean)	Scope 1 (Carbon Neutral)		547670	458777	508858	415443	440426	455244	486152	430290	349660	408998	405795	485211	5392524
3	Company Owned Vehicle (Petrol)	Scope 1	Ltr	89	82	85	89	89	85	92	89	82	89	82	89	1040
4	LPG (Canteen)	Scope 1	Kg	209	190	133	247	190	228	247	209	190	190	209	285	2527
5	Referigerent AC R22	Scope 1	Kg	32.0	32.5	51.0	1.5	40.0	25.5	0.0	24.0	16.0	40.3	0.0	0.0	263
6	Referigerent AC 410 A	Scope 1	Kg	0.0	0.0	6.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	12
7	Referigerent AC R32	Scope 1	Kg	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	10

NOTE: Soybean biomass, primarily derived from agricultural residues such as straw and stalks, presents a renewable alternative to fossil fuels in energy production. When combusted, it emits biogenic CO₂, which is typically considered carbon-neutral under international GHG accounting frameworks—provided the biomass is sustainably sourced and regrown. Soybean biomass has a calorific value of approximately 3281.65 kcal/kg, with low moisture content (<10%), making it suitable for thermal applications. Its use contributes to circular economy goals by valorising agricultural waste.

Scope	Emission source	category	t CO2e
		Fuels	82.97
Scope 1	Direct emissions	Passenger Vehicles	1.85
		Refrigerants	762.44
	Total Scope	847.26	


S.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Government Grid Electricity	Scope 2	KwH	457670	426220	468280	428870	444560	439580	433070	448735	427730	457490	420375	461835	5314415

Scope	Emission source	t CO2e	
	Emissions from the	Generation emissions	3,773.23
Scope 2	generation of purchased electricity	T&D losses	531.44
	Total Scop	4,304.67	

S	.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
	1	Shipping Distance Kms (By Diesel 40' Truck)	Scope 3	Km	91760	69321	64234	44439	54910	109765	57589	72755	61028	100485	176792	143891	1046969
	2	Employee Commute By Motorcycle Petrol	Scope 3	Km	62400	57600	60000	62400	62400	60000	64800	62400	57600	62400	57600	62400	732000

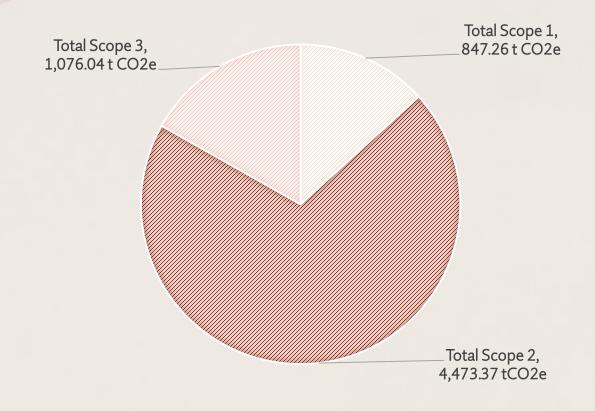
Scope	Emi	t CO2e			
		Freighting goods	1,142.41		
Scope 3	Indirect Emissions	Employees commuting	80.79		
		Total Scope 3	1,223.20		

Scope	Category	t CO₂e				
Scope 1	Direct Emissions	555.98				
Scope 2	Energy Indirect Emissions	4304.67				
Scope 3	Other Indirect Emissions	1223.20				
	Total Emissions					

S.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Diesel consumed in DG set (600 kVA)	Scope 1	Ltr	1400	700	2500	1950	950	14500	1200	1600	550	1700	950	100	28100
2	Biomass Pellets (Soyabean)	Scope 1 (Carbon Neutral)	Kg	581120	500643	478090	422627	396358	360687	426030	428951	432029	422208	408417	476843	5334003
3	Company Owned Vehicle (Petrol)	Scope 1	Ltr	92	85	85	89	85	89	92	89	85	89	82	92	1053
4	LPG (Canteen)	Scope 1	Kg	133	190	266	152	171	247	228	209	228	190	171	152	2337
5	Referigerent AC R22	Scope 1	Kg	26	87	32	32	27	24	16	16	32	24	16	35	364
6	Referigerent AC 410 A	Scope 1	Kg	0	0	0	5	0	5	15	0	5	10	8	0	48
7	Referigerent AC R32	Scope 1	Kg	0	0	0	0	0	0	0	5	0	0	0	0	5

NOTE: Soybean biomass, primarily derived from agricultural residues such as straw and stalks, presents a renewable alternative to fossil fuels in energy production. When combusted, it emits **biogenic CO₂**, which is typically considered carbon-neutral under international GHG accounting frameworks—provided the biomass is sustainably sourced and regrown. Soybean biomass has a calorific value of approximately **3281.65 kcal/kg**, with low moisture content (<10%), making it suitable for thermal applications. Its use contributes to circular economy goals by valorising agricultural waste.

Scope	Emission source	t CO2e	
		Fuels	46.31
	Direct emissions	Passenger Vehicles	1.83
Scope 1		Refrigerants	507.84
	Total Scope	555.98	


S.I	No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
	1	Government Grid Electricity	Scope 2	KwH	495035	451210	460365	472785	476035	382920	454640	448865	451885	482145	462155	484635	5522675

Scope	Emission source	category	t CO2e
	Emissions from the generation of purchased	Generation emissions	3921.10
Scope 2	electricity	T&D losses	552.67
	Total Scop	e 2	4473.37

S.No	. Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Shipping Distance Kms (By Diesel 40' Truck)	Scope 3	Km	79854	101912	68744	74788	74188	65124	66870	62614	60726	64786	72891	112299	904796
2	Employee Commute By Motorcycle Petrol	Scope 3	Km	64800	60000	60000	62400	60000	62400	64800	62400	60000	62400	57600	64800	741600

Scope	Emi	t CO2e	
		Freighting goods	994.28
Scope 3	Indirect Emissions	Employees commuting	81.76
		Total Scope 3	1076.04

Scope	Category	t CO₂e				
Scope 1	Direct Emissions	847.26				
Scope 2	Energy Indirect Emissions	4473.47				
Scope 3	Other Indirect Emissions	1076.04				
	Total Emissions					

GHG EMISSIONS SINK – PAL FOREST

PAL Forests is a pioneering sustainability initiative by Pal Fashions Pvt Ltd, transforming industrial land in Tarapur into dense native forests using the Miyawaki method. With over 25,000 surviving trees, the project aims to achieve carbon neutrality and eventually carbon-negative status.

PAL Forests is the flagship ecological restoration initiative by Pal Fashions Pvt Ltd, located at MIDC Tarapur, Palghar. Inspired by the Miyawaki method—a Japanese afforestation technique that fosters rapid, dense growth of native species—the project has successfully cultivated over 25,000 surviving trees on plot OS-20, transforming it into a thriving "oxygen bank."

This effort began on 5th November 2016, commemorating the birth anniversary of Sardarni Kulwant Kaur Ahuja, with an initial plantation of 2,500 saplings. Since then, the forest has expanded dramatically, achieving a 96% survival rate, thanks to meticulous planning and biodiversity-focused planting.

The initiative complements PAL's broader sustainability journey:

- Zero fossil fuel use since 2008, with boilers running on bio-waste briquettes
- Waterless printing and green manufacturing innovations
- 30% reduction in water consumption through recycling and reuse
- Eligibility for carbon credits due to significant GHG emission reductions

By creating the "Lungs of Tarapur," PAL is not only offsetting its operational emissions but also setting a benchmark for industrial greening. The long-term goal is to become carbon negative, reinforcing PAL's commitment to regenerative sustainability.

Other Afforestation & Complementary Projects Pal Fashions Collaborated:

- Tarapur Environment Protection Society (Tarapur) 5000 trees planted
- 2. Tata Steel Wires Division (MIDC, Boisar) 11500 trees planted
- 3. Future Enterprises (Tarapur) 800 trees planted
- 4. GIDC (Surat) 1600 trees planted
- 5. TMRCT (Boisar) 4500 trees planted
- 6. Light of Life Trust (Karjat) 4500 trees planted
- 7. Tata Steel (Kurgaon) 4500 trees planted
- 8. Viraj Project (Tarapur) 3000 trees planted
- 9. Treevolutions Lungs of Boisar (in collaboration with HDFC Bank) 114532 saplings planted on the sea bank using Miyawaki method
- 10. Paper waste is recycled to make inhouse stationary, notebooks for schools
- 11. Water waste is donated to GOONJ to make sanitary pads for underprivileged girls, bags and clothes

PAL FORESTS

Breathing Life into Tarapur

PAL Fashions Pvt Ltd transforms Plot OS-20, M/DC Tarapur, Palgar into an "oxygen bank" by planting over 25,000 native trees using the Miyawaki method.

5 Nov 2016
Project
launch date

25,000+ Trees

Survival rate

COMPLEMENTARY INITIATIVES

Zero fossil fuel use since 2008

Waterless printing

30% water reduction

Carbon credits eligibility

Copyright © 2025 GCS. All rights reserved.

Date: 12th Feb. 2022

Managing Director, M/s. Pal Fashions Pvt. Ltd. E-49, Tarapur, MIDC Palghar, Maharashtra

Sub: Appreciation for providing support for developing Miyawaki Forests in Tarapur

Dear, Mr. Charan Ahuja

We appreciate you and your team for providing support and expertise in developing Miyawaki Forest at our plant, at our officer's colony and at TMRCT Hospital.

Your team helped us throughout the project, right from procurement of tree saplings to plantation as well as training our personnel in the Miyawaki methodology.

These projects have shown exceptional results and are also being replicated in other locations.

Thanks for your support.

Satish Kr Chief of Operations Tata Steel Limited

TATA STEEL LIMITED

Global Wires - India
Plot No F-B MIDC Tarapur Industrial Area District Palghar 401 506 India
Tel 91 2525 295000 website www.tatawire.com
Registered Office Bombay House 24 Homi Mody Street Mumbai 400 001 India
Tel 91 22 6665 8282 Fax 91 22 6665 7724
CIN L27100MH1907PLC000260

On 5th June 2017, World Environment Day our Hon'ble Chief Minister Shri Devendra Fadnavis Ji presented the Vasundhara Special Appreciation Award for Tree Plantation to **Pal Fashions Private Limited**.

Pal Fashions Pvt. Ltd. has collaborated to create nearly 11 forests, including the Pal Forest – Lungs of Tarapur. These forests have nearly 60,000 mature trees that contribute to significant GHG emissions sink. It is eligible for carbon credits as the reduction amount is significant.

- The Miyawaki method promotes dense, fast-growing native forests.
- Species selection and soil enrichment may lead to above-average sequestration rates.

Calculations:

- 1 mature tree with hardwood may sequester up to 50 kg CO₂/year
- 60000 trees * 50 = 3000000 kg = **3000 t CO2e**

Metric	Value
Estimated CO ₂ absorption per tree	50 kg/year (conservative)
Total offset from 60,000 trees	≈3000 tCO₂e/year
2024 emissions	6,396.67 tCO₂e
% Offset Achieved	≈46.9%

NORMALIZED DATA BASED ON CURRENT DATA

YEAR 2023

	YEAR 2023															
S.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Shipment	Yearly	m	1067253	758711	748510	568872	723983	813561	864659	1039826	789001	834626	615240	979880	9804122
2	Shipment	Yearly	Kg	190400	147312	132649	99591	133762	150025	158001	199655	141958	174538	116853	190140	1834884
3	Working Days	Yearly	Number	26	24	25	26	26	25	27	26	24	26	24	26	305

GHG Emission (per kg Shipping) - 2023

	Total Shipment - 1834884 kg								
Absolute	Scope 1 tCO2e	Scope 2 tCO2e	Scope 3 tCO2e	Total Scope tCO2e					
Year 2023	555.98	4304.67	1223.20	6083.85					
Normalised	Scope 1 tCO2e Per Kg	Scope 2 tCO2e Per Kg	Scope 3 tCO2e Per Kg	Total Scope tCO2e Per Kg					
Year 2023	0.00030	0.00235	0.00067	0.00332					

GHG Emission (per meter Shipping) - 2023

Total Shipment - 9804122 m								
Absolute	Scope 1 tCO2e	Scope 2 tCO2e	Scope 3 tCO2e	Total Scope tCO2e				
Year 2023	555.98	4304.67	1223.20	6083.85				
Normalised	Scope 1 tCO2e Per meter	Scope 2 tCO2e Per meter	Scope 3 tCO2e Per meter	Total Scope tCO2e Per meter				
Year 2023	0.00006	0.00044	0.00012	0.00062				

NORMALIZED DATA BASED ON CURRENT DATA

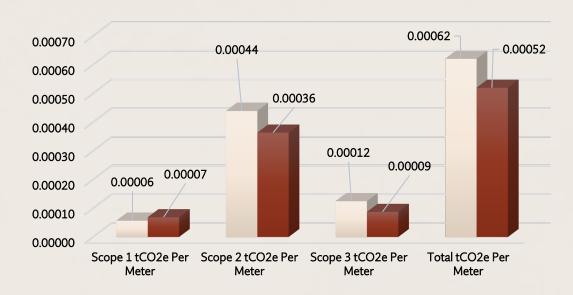
YEAR 2024

	YEAR 2024															
S.No.	Description	GHG Scope	Unit	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
1	Shipment	Yearly	m	1024385	1020648	1809180	861035	839728	1094675	786360	1080399	1045133	903339	915579	921133	12301594
2	Shipment	Yearly	Kg	196878	206327	327443	159595	170652	222639	156712	201515	189776	158890	169502	167008	2326937
3	Working Days	Yearly	Number	27	25	25	26	25	26	27	26	25	26	24	27	309

GHG Emission (per kg Shipping) - 2024

	Total Shipment - 2326937 kg								
Absolute	Scope 1 tCO2e	Scope 2 tCO2e	Scope 3 tCO2e	Total Scope tCO2e					
Year 2024	847.26	4473.37	1076.04	6396.67					
Normalised	Scope 1 tCO2e Per Kg	Scope 2 tCO2e Per Kg	Scope 3 tCO2e Per Kg	Total Scope tCO2e Per Kg					
Year 2024	0.00036	0.00192	0.00046	0.00275					

GHG Emission (per meter Shipping) - 2024


	Total Shipment - 9804122 m								
Absolute	Scope 1 tCO2e	Scope 2 tCO2e	Scope 3 tCO2e	Total Scope tCO2e					
Year 2024	847.26	4473.37	1076.04	6396.67					
Normalised	Scope 1 tCO2e Per meter	Scope 2 tCO2e Per meter	Scope 3 tCO2e Per meter	Total Scope tCO2e Per meter					
Year 2024	0.00007	0.00036	0.00009	0.00052					

PERFORMANCE - 2024 BASE YEAR 2023

Shipment (Meter)										
Year 2023	9804122									
Year 2024		12301594								
Absolute	Scope 1 tCO2e	Scope 2 tCO2e	Scope 3 tCO2e	Total tCO2e						
Year 2023	555.98	4304.67	1223.20	6083.85						
Year 2024	847.26	4473.37	1076.04	6396.67						
Normalised	Scope 1 tCO2e Per Meter	Scope 2 tCO2e Per Meter	Scope 3 tCO2e Per Meter	Total tCO2e Per Meter						
Year 2023	0.00006	0.00044	0.00012	0.00062						
Year 2024	0.00007	0.00036	0.00009	0.00052						
%Performance (- Decrease & + Increase)	Scope 1 tCO2e Per Pc	Scope 2 tCO2e Per Pc	Scope 3 tCO2e Per Pc	Total tCO2e Per Pc						
Year 2023	Base Year	Base Year	Base Year	Base Year						
Year 2024	21.4521	-17.1787	-29.8903	-16.2041						

GHG Inventory- normalised

CII-Green Products and Services Council

hereby certifies that

Cotton Fabric

(GPPFL669001)

Manufactured by **Pal Fashions Private Limited** at **Mumbai, Maharashtra** meets the requirements of GreenPro Ecolabel. The carbon footprint of the product is **19.05 kg CO₂ eq / kg of cotton fabric** based on the Life Cycle Impact Assessment Study (Cradle to Gate) conducted as per IS 14040/14044 standards.

This certification is valid till December 2027

Jamshyd N Godrej Chairman, CII-Godrej GBC

Chairman, CII-Green Products & Services Council

Molechatran

K S Venkatagiri
Executive Director, CII-Godrej GBC

Supporting Council and programmes

CII-Green Products and Services Council

hereby certifies that

Polyviscose Fabric

(GPPFL669002)

Manufactured by **Pal Fashions Private Limited** at **Mumbai**, **Maharashtra** meets the requirements of GreenPro Ecolabel. The carbon footprint of the product is **10.56 kg CO₂ eq / kg of polyviscose fabric** based on the Life Cycle Impact Assessment Study (Cradle to Gate) conducted as per IS **14**040/14044 standards.

This certification is valid till December 2027

Darger

Jamshyd N Godrej Chairman, CII-Godrej GBC A R Unnikrishnan

Chairman, CII-Green Products & Services Council

K S Venkatagiri Executive Director, CII-Godrej GBC

Supporting Council and programmes

CII-Green Products and Services Council

hereby certifies that

Viscose Fabric

(GPPFL669003)

Manufactured by **Pal Fashions Private Limited** at **Mumbai, Maharashtra** meets the requirements of GreenPro Ecolabel. The carbon footprint of the product is **6.6 kg CO₂ eq / kg of viscose fabric** based on the Life Cycle Impact Assessment Study (Cradle to Gate) conducted as per IS 14040/14044 standards.

This certification is valid till December 2027

Jamshyd N Godrej Chairman, CII-Godrej GBC 7

Molenatran

A R Unnikrishnan
Chairman, CII-Green Products & Services Council

K S Venkatagiri Executive Director, CII-Godrej GBC

Supporting Council and programmes

CII-Green Products and Services Council

hereby certifies that

Polyester Fabric

(GPPFL669004)

Manufactured by **Pal Fashions Private Limited** at **Mumbai**, **Maharashtra** meets the requirements of GreenPro Ecolabel. The carbon footprint of the product is **10.59 kg CO₂ eq / kg of polyester fabric** based on the Life Cycle Impact Assessment Study (Cradle to Gate) conducted as per IS 14040/14044 standards.

This certification is valid till December 2027

8 m

Jamshyd N Godrej Chairman, CII-Godrej GBC

A R Unnikrishnan

Chairman, CII-Green Products & Services Council

K S Venkatagiri
Executive Director, CII-Godrej GBC

Supporting Council and programmes

CII-Green Products and Services Council

hereby certifies that

Polycotton Fabric

(GPPFL669005)

Manufactured by **Pal Fashions Private Limited** at **Mumbai**, **Maharashtra** meets the requirements of GreenPro Ecolabel. The carbon footprint of the product is **10.63 kg CO₂ eq / kg of polycotton fabric** based on the Life Cycle Impact Assessment Study (Cradle to Gate) conducted as per IS **140**40/14044 standards.

This certification is valid till **December 2027**

Jamshyd N Godrej

Chairman, CII-Godrej GBC

A R Unnikrishnan

Chairman, CII-Green Products & Services Council

K S Venkatagiri Executive Director, CII-Godrej GBC

Supporting Council and programmes

Suggestions to Reduce Emissions

Consider switching to air conditioners with R-32 refrigerant gas.

Update to BS6 technology genset.

Shift to solar energy to reduce the consumption of grid energy, eventually reducing Scope 2 emission.

Every 1,000 kWh from solar avoids ~800-1,000 kg CO₂e.

Consolidate shipments significantly improve Scope 3 emissions.

This could reduce the impact by 10-15% annually.

Factory-owned vehicles should be switched to CNG or Electric. This will reduce the Scope 1 emissions.

Further, to reduce Scope 2 emissions the unit should consider investing in RECs.

Shift to cargo vehicles with cleaner fuels to reduce Scope 3 emissions. For longer distances, rail could be considered.

